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MAPPINGS OF ALMOST HERMITIAN
MANIFOLDS

SAMUEL 1. GOLDBERG & ZVI HAREL

1. Introduction. The concept of a mapping of bounded dilatation recently
introduced [4] is more general and natural than that of a quasiconformal
mapping. Let M and N be Riemannian manifolds, and let f: M > N be a
mapping of bounded dilatation of order K. When f is also harmonic, the
principal result in [4], namely, Theorem 5.1, may be extended to complete
manifolds M with nonpositive sectional curvature. (Theorem 5.1 says, in
particular, that for an open m-ball B™ with the Poincaré metric and an
n-dimensional Riemannian manifold N whose sectional curvatures are
bounded above by a negative constant, if f: B™ — N is a harmonic mapping
of bounded dilatation, then f is distance-decreasing up to a constant.)
However, these generalizations are concerned only with the Riemannian
structures of M and N as C™ manifolds. When these give rise to more rigid
structures, e.g., when both M and N are hermitian, or, more generally, almost
hermitian manifolds, and f: M — N is an almost complex mapping, then it
turns out that f is of bounded dilatation. In addition, if the hermitian
structures are suitably restricted (see Theorem 2) in a sense to be described in
§2, f is also harmonic. It is therefore of interest to ask for the almost
hermitian extensions of the Schwarz-Ahlfors lemma. Typical of the results
obtained is the following generalization of a theorem due to S. S. Chern [2].

Theorem 1. Let f: M — N be an almost complex mapping of 2n-dimen-
sional almost hermitian manifolds. Suppose M is a complete Kaehler manifold
with nonpositive sectional curvature. If the scalar curvature of M > —S, and the
Ricci curvature of N < —S/2n, where S is a positive constant, then f is
volume-decreasing.

Note that the sectional curvatures of a manifold of constant negative
holomorphic curvature ¢ lie between ¢ and ¢/4, and that a complete simply
connected m-dimensional Kaehler manifold of constant negative holomor-
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phic sectional curvature is biholomorphic with an open ball in C™. This is the
case dealt with in [2].

For more general domains, we have the following.

Theorem 2. Let M be a 2m-dimensional complete almost semi-Kaehler
manifold with nonpositive sectional curvature whose Ricci curvature is bounded
below by a negative constant —A, and let N be a 2n-dimensional quasi-Kaehler
manifold whose sectional curvature is bounded above by a negative constant —B.
If f is an almost complex mapping of M into N, then (i) f is distance-decreasing
if B > Ak?/2, where k = min(2m, 2n), and (ii) in the equidimensional case, f is
volume-decreasing provided B > mA.

For almost Kaehler manifolds, we have the following.

Corollary. Let M be as in Theorem 2, and let N be a 2n-dimensional almost
Kaehler manifold whose holomorphic bisectional curvature is bounded above by
a negative constant -2B. If f is an almost complex mapping of M into N, then
the conclusions (i) and (ii) hold.

In §2, the canonical connection of an almost hermitian manifold is intro-
duced, and the definitions of a quasi-Kaehler and almost semi-Kaehler
manifold are given. In §3, a formula for the Laplacian of the ratio of volume
elements of M and N in the equidimensional case is derived which resembles
that obtained in [2] for hermitian manifolds. The proof of Theorem 1 is given
in §§4 and 5 by a method involving a conformal deformation of the hermitian
metric. In the concluding section, a distortion theorem is given when the
domain is not necessarily a Kaehler manifold.

2. The canonical connection. Let M be a 2n-dimensional almost hermitian
manifold with (hermitian) metric g and almost complex structure J. An
hermitian connection on M is a connection in the bundle U(M) of unitary
frames on M, that is, a linear connection which is both metric (g is parallel)
and almost complex (J is parallel). The existence of such a connection is
assured by the general theory of connections in principal bundles.

Let T’ be an hermitian connection on M, and let w = (af ) be its connection
form on U(M). We denote by @ = (&) and @ = (Q)) the corresponding
torsion and curvature forms on U(M). Finally, let # = (#°) be the canonical
form on U(M). Then the following structural equations hold:

(1) d=-wNb+0,
) do = -0 Aw+ Q.
Any other hermitian connection T has a connection form & related to by

& = + alf* + bio*, 0% = 9%,
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where the aj, and b are complex-valued functions on U(M), and aj, + bj,=
0 since w and @ are both skew hermitian. (The summation convention is used
here and in the sequel.) These functions are chosen so that 5,8 A 8% is the
part of @' of bidegree (1,1). The following statement therefore follows (see
also [9]).

Proposition 1. There is a unique hermitian connection with a pure torsion
form ©, that is, ©, , = 0.

This connection is called the canonical connection of the almost hermitian
manifold M. It was introduced by S. S. Chern [1] in the hermitian (integrable)
case. The property ©,, = 0 is expressible in terms of the torsion tensor T by
T(X,JY) = T(JX, Y) for any vector fields X and Y on M.

Proposition 2. The torsion form of the canonical connection on M is of
bidegree (2,0) if and only if M is hermitian.

Proof. The almost complex structure is integrable if and only if d A ™° c
A& A, where AP is the module of forms of bidegree (p, g) on M.
Let ¢ be a form of bidegree (1,0) on U(M). Then ¢ = ¢,§° and

do = (do, — ¢f) N\ 0 + .
Hence (d¢),, = 45.6{;,2, and this is zero if and only if the (0,2) part of the
torsion form vanishes.

The torsion forms are closely related to the exterior differential of the
Kaehler form ® (viewed as a tensorial form on U(M)). We have, using (1),

d=ik N0 i=V-1,
d® = i(-of A& + OF) A 0% — i0* N\ (-&f A + @)
= —i(wf + @) A\ ¥ N G* + i(8F NG~ 0F NEF),

so that

(3) do = i(© A 8% — B A 8%).

Separating (3) by bidegrees and recalling that ©,, = ®, | = 0, we have
@ (dD)o3 = (d®)s0 = i6f, N 6%,

(%) (d®),, = '(37@)—15 = ie’i,o A

An almost hermitian manifold M is called quasi-Kaehlerian if 3® = (d®),,
vanishes. (Here 3¢ = (&), ,,, and = (d)),,,+1 for a form ¢ of bidegree
(p, 9)). M is called almost semi-Kaehlerian if ® is co-closed. It is known (cf.
[5] that a quasi-Kaehler manifold is also almost semi-Kaehlerian.

Proposition 3. The forsion form of the canonical connection on M is of
bidegree (0,2) if and only if M is quasi- Kaehlerian.
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If (d®)y; is also zero, M is almost Kaehlerian and we can use (3) to
characterize M directly.

Proposition 4. Let © be the torsion form of the canonical connection on an
almost hermitian manifold M, and let 8 be the canonical form on U(M). Then
() M is almost Kaehlerian if and only if & A 8° = 0, and (ii) M is Kaehlerian
ifand only if ® = Q.

The second part of this proposition is well known.

3. The Laplacian of the ratio of volume elements. Let M be a 2n-dimen-
sional almost hermitian manifold with the canonical connection of §2. For
the sake of convenience, we make the discussion local by fixing a local
section of U(M), and pulling the various forms back to a neighborhood in M.
All the formulas above still hold locally. In particular, {#’} is the coframe
dual to the chosen unitary frame field. The covariant differential V defined
by T is given by

Vo = -wji R ¢.
For a complex-valued function # on M, we can write
Vu=ub + u.b,
where i* = i + n, and
Viu=du® 0 — uw ¢ + du. ® 0 — u.5! ¢
= (du, — uw!) ® 0° + (dup — u.l) ® 6°
= (u,.jBf + u,.j.07) 84+ (ui.jﬂj + u,..j.B_j) ® 6§ (say),
where the u 5, 4, B =1, ..., 2n, are given by
w8 + up = du, — u,
Ui + Uyl = du — w3
Since du = u,0° + u.8", the structural equation (1) gives
0=du N0 — uw/ N0/ + u® + du \ 0" — uof \ & + 40
= (du, — u!) \ 0" + u® + (dup — uif) NG + u, &
= (w8 + upu ) N0 + u® + (u + uppl) A + 0,8
Comparing bidegrees we obtain
Upl N0+ uu NG =0,



MAPPINGS OF ALMOST HERMITIAN MANIFOLDS 71

SO
u". = l‘j.i.

Therefore the Laplacian of u is
(6) Au = g*Pup = 287y = 2uy.
Since du = (du),o = 8", and |
3du = (d(u8")),, = up.’ N 6,
the Laplacian may be computed from the components of the complex hessian
of u,
(7 30u = -30u = upd' N\ .

Let N be another almost hermitian manifold of the same dimension 2n,
and let f: M — N be a C* mapping. We fix a local unitary frame field on N,
and denote by §’ = (8"%), ' = (0"%), &' = («'}) and & = ('}) the pullbacks
by f* of the forms corresponding to 8, ©, w and & on M. Let {s,} be the
induced unitary frame field in the induced bundle f~'7"(N). Then f is almost
complex if and only if its differential maps tangent vectors of bidegree (1,0) to
tangent vector of the same bidegree. It is therefore given by

fo=f%, @6

Denoting by V’ the covariant differential operator on f~'T"9(N)-valued
forms induced by the canonical connections in M and N, we have

Ve =15, ® (df* + ffw's — f70]) ® 6
=5, ® (0 +[a0) @8 (say).

Taking the exterior derivative of §* = f°¢* and using (1), we obtain
—WF N OE+ 0% = df* N O+ (-] N+ €),

that is
(dff + fPw's — fFl) N0 + fr6F — @ =0
from which
(fo0/ + )N O + f20 —@= =0.
Comparing bidegrees we see t.hat
,j.6V N8 =0,
from which

®) fa=0
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Put D = det(f*), and u = |D|* = DD. The latter is the ratio of the volume

elements, f*V,,/ V,,. Let D} denote the cofactor of f* in D. Then
9) dD = Dldf* = DX f3# + frwf — fPwp)

= Difs¢ + D(of — o

= D# + D(w; — o) (say).
Since w/ and w/* are pure imaginary,

du= DD + DD#, du=DDe.

Taking the exterior derivative of (9) and using the second structural equation
(2) we obtain

0 = d(D#) + dD A (o — &) + Dd(w — )
= d(D,¢’) + D¢’ A (o — ) + D(Q — Q),

so that
0= Dd(D#) + D N (D' — dD) + u(Q — Q)
= d(DD¥) + D# N DI + u(Q — Q).

Hence

d(du) = D,D,# N 0' — u(Qi — QF).
Comparing bidegrees yields

3%u = DDH N0 — u(Q — QF), ..
But (2)),, = Rj~0% A\ 8’, where the functions Rz, are the components of

the curvature tensor. Hence

(ﬂ'l:)l,l = Rip0* N §' = R0 NG,
where R X*X'/g,nX*X" is the Ricci curvature in the direction of the tangent
vector X. Using (7) we have

up N9 = DD N 0 + u(Rpl N\ O — ffPR.B N 07),
from which it follows that
Uz = DD, + u( Ry — ffFR.g.).
Thus
Au = 2D,D, + u(R — 2f*f?R.s),
where R = 2R;. is the scalar curvature of M, and

(10) Alog u = R — 2f°f®R.,.
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for ¥ > 0, that is, at those points where f is locally one-to-one. In the
hermitian case, this formula was obtained by Chern [2].
If the Ricci curvature of N is not greater than —S/2n, § > 0, then

- S -
7 7w & —— fafe _oyl/n
2T R < == fife < —Sull”,
so that
(11) Alogu > R + Su'/".

4. Conformal changes of the hermitian metric. Let M be a 2n-dimensional
almost hermitian manifold with hermitian metric g. Then § = ¢*% is also an
hermitian metric on M for any smooth real-valued function ¢ on M. Let {6}
be a (local) unitary coframe on (M, g). Then {§'}, §° = ¢%’, is a unitary
coframe on (M, §). Denote by 4, &, & and § the analogues for (M, g) of the
forms 6, w, © and £, respectively, on (M, g) defined in §2. Then

(12) 4 = ev.
Hence, from (1),
O=d+a N

=edo N0 +e°’(®—wNb)+ e’aNd

=e’[@+ (0 ~w) N8 +do N0
Put &/ — o = aj 0% — &,0* and do = 0,6% + 5,6%. Then

e = O + (ai8* — OV + (0,6% + 5°) N6
Comparing bidegrees we see that
NG — G0N0 =0,
from which it follows that
aj, = 8a,.

Therefore

& = o + 8o, 0% — §5,0% & = & + 20,8° N 6.

Setting d°6 = i(d0 — d0) = i(5;,0% — 0,0%) we may write the last two for-
mulas as

(13) & = w + id%l,

(14) e”O=0+2 N0,

where 7/ is the identity matrix.
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For the curvature forms, from (2) we have
(15) @ =do+6 No = do +idd] + 0 A\w = Q + idd%]I.
Comparing bidegrees yields
(16) &, =9, — 20d0l,
or, in terms of components,
ezoﬁj;'d‘ = j‘l.c!‘ — 28/,
where 930 = 0,,,0% A\ #'. Thus, for the Ricci tensors,
¢°Ry. = Ry — 2n0,.,
and, for the scalar curvatures,
(17) e*R = R — 2nAq.
(The last formula is simpler than its Riemannian analogue.)

5. The volume-decreasing theorem. Let M be a complete simply connected
n-dimensional Kaehler manifold of nonpositive sectional curvature. We ex-
haust M by a sequence of relatively compact open submanifolds M, = {p €
M|r(p) < p}, where 7(p) is the Riemannian distance of p from a fixed point
in M, that is, M = U ,., M,. Endow M, with a metric § conformally
related to g, namely,

0?

pz — g2
By (17), the scalar curvature R of (M,, &) is given by

R = (R — 2nAv,)

g = e*»g, wherev, = log

p? — 1? ? anc 2 2 2
= 2 R—F[p + 72+ (p —'r)'rA'r],

where we have used the identity

de, dzv,D
Avp = —‘?AT + 7 .

Suppose now the scalar curvature of M satisfies R > —S, where § is a
positive constant. Since M has nonpositive sectional curvature, its Ricci
curvature is also bounded below by -S. (Note that by Proposition 4, the
canonical connection is the Riemannian connection.) Let S = 2r — x>
Then (cf. [7))

0 <7A7 € (2n — 1)k7 coth x7 < (2n — 1)xp coth xp.
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. 2,2
R=(p 27 )R—Gp,
p

where ¢, is a real-valued function on M, satisfying

Hence

4
0<e, < ;?[sz + (27 — 1)kp? coth :cp] = 0(%)

as p — oo. Therefore, for every ¢ > 0, we have
(18) R>-S—¢

on M, for sufficiently large p.
Let f be as in Theorem 1, and let f: M, — N be its restriction to M.
Consider the ratio of volume elements

. p2 _ 72 2n
i=fVy/Vy =e2™uy= (-—2— u.
? p
Since the function # is nonnegative and continuous on the closure of M, > and
zero on its boundary, it attains its maximum on M o If the Ricci curvature of
N is not greater than —S/2n, then, by (11) and (18),

Alogi > R +8SaV/" > S(@/" - 1) — &.

At the maximum point x of #, Alog# < 0, unless # is totally degenerate.
Hence #(x) < (1 + ¢/S)". Since this inequality obviously holds at all points p

‘ ofMp,
2n pz 2n e\n
1] < =] .
=) w0 < (5] 1+5)

Finally, letting p — o0, and & — 0, we conclude that ¥ < 1 thereby completing
the proof of Theorem 1.

Corollary 1. Let M be the open unit ball in C™ with the Poincaré-Bergman
metric, and let N be an almost hermitian manifold of the same dimension. If the
Ricci curvature of N is not greater than —2(m + 1), then every almost complex
mapping f: M — N is volume-decreasing.

Corollary 2. Let M be a symmetric bounded domain with the Bergman
metric, and let N be arn almost hermitian manifold of the same dimension. If the
Ricci curvature of N is not greater than —1, then every almost complex mapping
f: M — N is volume-decreasing.

In both corollaries, M is an Einstein-Kaehler manifold with Ricci tensor
-2(m + 1)g and —g respectively.

u(p)=( e’

2
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6. Mappings of bounded dilatation. Let M and N be C*® Riemannian
manifolds of dimensions # and »n respectively, and let g and g* denote their
respective Riemannian metrics. Let f: M — N be a C*® mapping, and denote
by Ai(2) > A(2) > - - - > A (p) > 0 the eigenvalues of ¥, f,: T,M - T, M,
where ‘f, denotes the transpose of the mapping f,. If there is a positive
number K such that for every p € M, A,(p) < A;(p) < K?A\,(p), then f is said
to be of bounded dilatation of order K. This notion is more general and natural
than that of a K-quasiconforma! mapping.

The norm || 4] of a linear mapping: 4: ¥V — W of Euclidean vector spaces
is defined by ||4||> = trace ‘4A. If r < min(m, n), A may be extended to the
linear mapping /A\"4: AV — AW given by NA(v; A\ - - - Av,) = Av,
/\ * - AAv,, where the v; € V. Then

(19) | ATl = > NN

I<iH< -+ - <ip<m

see [4]. Observe that || /\f,|| bounds the ratio of r-dimensional volume
elements. In particular, for any X € T, M,

(fg*)(X, X) = g*(£, X, £,.X) = g(.S. X, X)

= 3 M) < MK, X) < 117X X),

where {&;}, i=1,..., m, is the basis of covectors dual to an orthonormal
basis of eigenvectors of ¥,f,. Thus f*(ds2) < || f,||* dsy, where ds,, and ds,
are the distance elements defined by g and g*, respectively.

Let k = min(m, n). Then rank f, < k. Hence, by (19),

@ {iAgr/ (5)) s (1 AmE (%) 1 <q<r <k

since || /\ %, | is the gth elementary symmetric function of A, . . ., A.
When f is of bounded dilatation of order K, there is an inequality in the
opposite direction, namely,

@1 (PRSI S WA AT
To see this, assume f, 7 0. Then
A . A A \172
tz - I A < 11/2 = (3\1) < kK.
WAWA (Zics AN) (AA2) 2
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Conversely, (21) implies that f is of bounded dilatation of some order. For,

(B _ A A (A, 1/2
AT @) [(’z‘)mz]m —["2/(,2()] ’

from which we have

(ﬁ)l/2 < (k)l/2 ”f*“z < k(k)l/zK.
A 2 I N\ ?f*” 2

When M and N are almost hermitian manifolds, and f: M — N is an
almost complex mapping, 7, f, commutes with the almost complex structure J
of M. This implies that if X is an eigenvector of ¥, f,, then so is JX. Since X
and JX are linearly independent, the eigenvectors of f, f, have multiplicity 2
at least, so, in particular, A,(p) = A(p) for all p € M. An important conse-
quence of this is given by

Proposition 5. An almost complex mapping of almost hermitian manifolds is
of bounded dilatation of order 1. '

The following statement is an extension of the well-known fact that a
holomorphic mapping of Kaehler manifolds is harmonic in terms of the
corresponding Kaehler metrics.

Proposition 6 (Lichnerowicz [8]). An almost complex mapping f M — N,
where M is an almost semi-Kaehler manifold and N is quasi-Kaehlerian, is a
harmonic mapping.

Combining the last two propositions it is seen that an almost complex
mapping f: M — N, where M and N are almost semi-Kaehlerian and quasi-
Kaehlerian, respectively, is harmonic and of bounded dilatation. It therefore
belongs to the class recently investigated by one of the authors [4].

7. A distance-decreasing theorem. In what follows, the almost complex
structures of M and N will be ignored. In fact, M and N will be C*®
Riemannian manifolds of dimensions 7 and n respectively. Proceeding lo-
cally, orthonormal moving frames {#’} in M and {#**} in N are chosen. Let
f: M —> N be harmonic. Then the components of f, with respect to the above
frames are given by

fro* = 9.

Assume M is complete and simply connected (otherwise, pass to its simply
connected covering), and has nonpositive sectional curvature. As in §5, we
exhaust M by means of the submanifolds M, with the identical conformally
related metrics.
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Let f be the restriction of f to (M,, &). Then it is shown in [3] that
| folI> = €| f,|I* has a maximum on M,. Furthermore, if the Ricci curva-
ture of M is bounded below by a negative constant —A, then there exists a
sequence of positive constants e(p), which goes to 0 as p — oo, such that

(22) ~Rs o TP < {4 + e flP

at the maximum point x of | f,|]>, where f* = e™f? and the R, ; are the
pullbacks by f* of the components of the curvature tensor of N. On the other
hand, if the sectional curvatures of N are bounded above by a negative
constant —B,

(23) —Rlg of PP < 2B N F P
Combining (22) and (23) we get, at x,
(24) 2B A, Il < {4 + «p)}I f, I

If f is of bounded dilatation of order X, then from (21) and (24)
2B| A1 < {4 + (@)} KK| LI
at x. Hence
I£dl? <3K°K?{4 + o)}/ B

everywhere in M. Since this inequality holds for every p and || Ffll = 11 fll as
p—>o©

I f.l? < 34K°K?/B.

Applying the inequality (20), this implies the following distortion theorem for
intermediate volume elements, which is a considerable improvement of Theo-
rem 5.1 in [4].

Proposition 7. Let M be an m-dimensional complete Riemannian manifold
with nonpositive sectional curvature and with Ricci curvature bounded below by
a negative constant —A, and let N be an n-dimensional Riemannian manifold
with sectional curvature bounded above by a negative constant -B. If f: M — N
is a harmonic mapping of bounded dilatation of order K, then

r. r k l/" A
VARSI LN <
forany r,1 <r < k = min(m, n).
Corollary, Under the conditions of Proposition 7,(i) f is distance-decreasing
if 2B > k*’AK?, and (i) f is volume-decreasing if m = nand 2B » mAK>.
Propositions 5 and 6 yield the following
Proposition 8. Let M be a 2m-dimensional complete almost semi-Kaehier
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manifold with nonpositive sectional curvature and with Ricci curvature bounded
below by a negative constant —A. Let N be a 2n-dimensional quasi-Kaehler
manifold whose sectional curvatures are bounded above by a negative constant
~B. If f: M — N is an almost complex mapping, then
, , _k 1/r 4
(AN ARAES 5(’,‘) 3
Jorany r,1 <r < k = min(2m, 2n).
Theorem 2 is now a consequence of Proposition 8.
The corollary to Theorem 2 is obtained from the following formula:

K(X, IX A Y2 + K(X, JV)|X AJY|* + K(JX, V)IX A Y|P
+ K(JX, JY)|JX AJY|P < 2H(X, Y)|IX 2| YI?,

valid for almost Kaehler manifolds (see [6, formula 4.5]) where K(X, Y) and
H(X, Y) are the sectional curvature and the holomorphic bisectional curva-
ture, respectively, determined by the tangent vectors X and Y. From this
formula, it is seen that (23) also holds under the assumption that the
holomorphic bisectional curvatures of N are bounded above by a negative
constant -2 B.

By taking M = C™ with the standard flat metric Proposition 8 yields the
following generalization of Liouville’s theorem as well as Picard’s first theo-
rem.

Proposition 9. Let N be a quasi-Kachler manifold with negative sectional
curvature bounded away from zero. If f: C™ — N is an almost complex mapping,
then it is a constant mapping.

We take this opportunity to correct an error in {4], from which §§6 and 7 of
this paper originated. The inequality in Lemma 2.2 should be replaced by
formula (21) above. (In the hypotheses preceding Lemma 2.1 the expression /,
should be replaced by /,_,.) As a consequence, the factor K* in Theorems 4.1,
5.1 and 5.4, as well as in Corollaries 4.2, 4.3 and 5.1 can be replaced by K 2,
This correction actually improves these results. Moreover, since for m = n =
2, the notion of a mapping of bounded dilatation of order K is identical with
that of a K-quasiconformal mapping, the factor K* appearing in Theorem 1
of [3] may be replaced by K2, thereby improving that statement when M and
N are surfaces.
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