MAPPINGS OF ALMOST HERMITIAN MANIFOLDS

SAMUEL I. GOLDBERG & ZVI HAR'EL

1. Introduction. The concept of a mapping of bounded dilatation recently introduced [4] is more general and natural than that of a quasiconformal mapping. Let M and N be Riemannian manifolds, and let $f: M \to N$ be a mapping of bounded dilatation of order K. When f is also harmonic, the principal result in [4], namely, Theorem 5.1, may be extended to complete manifolds M with nonpositive sectional curvature. (Theorem 5.1 says, in particular, that for an open m-ball B^m with the Poincaré metric and an n-dimensional Riemannian manifold N whose sectional curvatures are bounded above by a negative constant, if $f: B^m \to N$ is a harmonic mapping of bounded dilatation, then f is distance-decreasing up to a constant.) However, these generalizations are concerned only with the Riemannian structures of M and N as C^{∞} manifolds. When these give rise to more rigid structures, e.g., when both M and N are hermitian, or, more generally, almost hermitian manifolds, and $f: M \to N$ is an almost complex mapping, then it turns out that f is of bounded dilatation. In addition, if the hermitian structures are suitably restricted (see Theorem 2) in a sense to be described in $\S2$, f is also harmonic. It is therefore of interest to ask for the almost hermitian extensions of the Schwarz-Ahlfors lemma. Typical of the results obtained is the following generalization of a theorem due to S. S. Chern [2].

Theorem 1. Let $f: M \to N$ be an almost complex mapping of 2n-dimensional almost hermitian manifolds. Suppose M is a complete Kaehler manifold with nonpositive sectional curvature. If the scalar curvature of $M \ge -S$, and the Ricci curvature of $N \le -S/2n$, where S is a positive constant, then f is volume-decreasing.

Note that the sectional curvatures of a manifold of constant negative holomorphic curvature c lie between c and c/4, and that a complete simply connected m-dimensional Kaehler manifold of constant negative holomor-

Communicated by S. S. Chern, January 13, 1977, and, in revised form, March 28, 1977. The first author was partially supported by NSF Grant MCS76-06319.

phic sectional curvature is biholomorphic with an open ball in \mathbb{C}^m . This is the case dealt with in [2].

For more general domains, we have the following.

Theorem 2. Let M be a 2m-dimensional complete almost semi-Kaehler manifold with nonpositive sectional curvature whose Ricci curvature is bounded below by a negative constant -A, and let N be a 2n-dimensional quasi-Kaehler manifold whose sectional curvature is bounded above by a negative constant -B. If f is an almost complex mapping of M into N, then (i) f is distance-decreasing if $B \ge Ak^2/2$, where $k = \min(2m, 2n)$, and (ii) in the equidimensional case, f is volume-decreasing provided $B \ge mA$.

For almost Kaehler manifolds, we have the following.

Corollary. Let M be as in Theorem 2, and let N be a 2n-dimensional almost Kaehler manifold whose holomorphic bisectional curvature is bounded above by a negative constant -2B. If f is an almost complex mapping of M into N, then the conclusions (i) and (ii) hold.

In $\S2$, the canonical connection of an almost hermitian manifold is introduced, and the definitions of a quasi-Kaehler and almost semi-Kaehler manifold are given. In $\S3$, a formula for the Laplacian of the ratio of volume elements of M and N in the equidimensional case is derived which resembles that obtained in [2] for hermitian manifolds. The proof of Theorem 1 is given in $\S34$ and 5 by a method involving a conformal deformation of the hermitian metric. In the concluding section, a distortion theorem is given when the domain is not necessarily a Kaehler manifold.

2. The canonical connection. Let M be a 2n-dimensional almost hermitian manifold with (hermitian) metric g and almost complex structure J. An hermitian connection on M is a connection in the bundle U(M) of unitary frames on M, that is, a linear connection which is both metric (g is parallel) and almost complex (J is parallel). The existence of such a connection is assured by the general theory of connections in principal bundles.

Let Γ be an hermitian connection on M, and let $\omega = (\omega_j^i)$ be its connection form on U(M). We denote by $\Theta = (\Theta^i)$ and $\Omega = (\Omega_j^i)$ the corresponding torsion and curvature forms on U(M). Finally, let $\theta = (\theta^i)$ be the canonical form on U(M). Then the following structural equations hold:

$$d\theta = -\omega \wedge \theta + \Theta,$$

$$d\omega = -\omega \wedge \omega + \Omega.$$

Any other hermitian connection $\tilde{\Gamma}$ has a connection form $\tilde{\omega}$ related to ω by

$$\tilde{\omega}_i^i = \omega_i^i + a_{jk}^i \theta^k + b_{jk}^i \bar{\theta}^k, \quad \bar{\theta}^k = \overline{\theta^k} \,,$$

where the a^i_{jk} and b^i_{jk} are complex-valued functions on U(M), and $a^i_{jk} + \overline{b^i_{jk}} = 0$ since ω and $\tilde{\omega}$ are both skew hermitian. (The summation convention is used here and in the sequel.) These functions are chosen so that $b^i_{jk}\theta^j \wedge \bar{\theta}^k$ is the part of Θ^i of bidegree (1,1). The following statement therefore follows (see also [9]).

Proposition 1. There is a unique hermitian connection with a pure torsion form Θ , that is, $\Theta_{1,1} = 0$.

This connection is called the *canonical connection* of the almost hermitian manifold M. It was introduced by S. S. Chern [1] in the hermitian (integrable) case. The property $\Theta_{1,1} = 0$ is expressible in terms of the torsion tensor T by T(X, JY) = T(JX, Y) for any vector fields X and Y on M.

Proposition 2. The torsion form of the canonical connection on M is of bidegree (2,0) if and only if M is hermitian.

Proof. The almost complex structure is integrable if and only if $d \wedge {}^{1,0} \subset \bigwedge^{2,0} \oplus \bigwedge^{1,1}$, where $\bigwedge^{p,q}$ is the module of forms of bidegree (p,q) on M. Let ϕ be a form of bidegree (1,0) on U(M). Then $\phi = \phi_i \theta^i$ and

$$d\phi = \left(d\phi_i - \phi_i\omega_i^j\right) \wedge \theta^i + \phi_i\Theta^j.$$

Hence $(d\phi)_{0,2} = \phi_j \Theta'_{0,2}$, and this is zero if and only if the (0,2) part of the torsion form vanishes.

The torsion forms are closely related to the exterior differential of the Kaehler form Φ (viewed as a tensorial form on U(M)). We have, using (1),

$$\begin{split} \Phi &= i\theta^k \wedge \bar{\theta}^k, \quad i = \sqrt{-1} \ , \\ d\Phi &= i \left(-\omega_j^k \wedge \theta^j + \Theta^k \right) \wedge \bar{\theta}^k - i\theta^k \wedge \left(-\overline{\omega}_j^k \wedge \bar{\theta}^j + \overline{\Theta}^k \right) \\ &= -i \left(\omega_i^k + \overline{\omega}_i^j \right) \wedge \theta^j \wedge \bar{\theta}^k + i \left(\Theta^k \wedge \bar{\theta}^k - \theta^k \wedge \overline{\Theta}^k \right), \end{split}$$

so that

(3)
$$d\Phi = i(\Theta^k \wedge \bar{\theta}^k - \overline{\Theta}^k \wedge \theta^k).$$

Separating (3) by bidegrees and recalling that $\Theta_{1,1} = \overline{\Theta}_{1,1} = 0$, we have

(4)
$$(d\Phi)_{0,3} = \overline{(d\Phi)_{3,0}} = i\Theta_{0,2}^k \wedge \overline{\theta}^k,$$

(5)
$$(d\Phi)_{2,1} = \overline{(d\Phi)_{1,2}} = i\Theta_{2,0}^k \wedge \overline{\theta}^k.$$

An almost hermitian manifold M is called *quasi-Kaehlerian* if $\bar{\partial}\Phi = (d\Phi)_{1,2}$ vanishes. (Here $\partial \psi = (d\psi)_{p+1,q}$ and $\bar{\partial}\psi = (d\psi)_{p,q+1}$ for a form ψ of bidegree (p,q)). M is called *almost semi-Kaehlerian* if Φ is co-closed. It is known (cf. [5]) that a quasi-Kaehler manifold is also almost semi-Kaehlerian.

Proposition 3. The torsion form of the canonical connection on M is of bidegree (0,2) if and only if M is quasi-Kaehlerian.

If $(d\Phi)_{0,3}$ is also zero, M is almost Kaehlerian and we can use (3) to characterize M directly.

Proposition 4. Let Θ be the torsion form of the canonical connection on an almost hermitian manifold M, and let θ be the canonical form on U(M). Then (i) M is almost Kaehlerian if and only if $\Theta^i \wedge \bar{\theta}^i = 0$, and (ii) M is Kaehlerian if and only if $\Theta = 0$.

The second part of this proposition is well known.

3. The Laplacian of the ratio of volume elements. Let M be a 2n-dimensional almost hermitian manifold with the canonical connection of §2. For the sake of convenience, we make the discussion local by fixing a local section of U(M), and pulling the various forms back to a neighborhood in M. All the formulas above still hold locally. In particular, $\{\theta^i\}$ is the coframe dual to the chosen unitary frame field. The covariant differential ∇ defined by Γ is given by

$$\nabla \theta^i = -\omega_i^i \otimes \theta^j.$$

For a complex-valued function u on M, we can write

$$\nabla u = u_i \theta^i + u_{i\bullet} \bar{\theta}^i,$$

where $i^* = i + n$, and

$$\nabla^{2}u = du_{i} \otimes \theta^{i} - u_{i}\omega_{j}^{i} \otimes \theta^{j} + du_{i^{\bullet}} \otimes \bar{\theta}^{i} - u_{i^{\bullet}}\bar{\omega}_{j}^{i} \otimes \bar{\theta}^{j}$$

$$= (du_{i} - u_{j}\omega_{i}^{j}) \otimes \theta^{i} + (du_{i^{\bullet}} - u_{j^{\bullet}}\bar{\omega}_{i}^{j}) \otimes \bar{\theta}^{i}$$

$$= (u_{ij}\theta^{j} + u_{ij^{\bullet}}\bar{\theta}^{j}) \otimes \theta^{i} + (u_{i^{\bullet}j}\theta^{j} + u_{i^{\bullet}j^{\bullet}}\bar{\theta}^{j}) \otimes \bar{\theta}^{i} \quad (\text{say}),$$

where the u_{AB} , A, B = 1, ..., 2n, are given by

$$u_{ij}\theta^{j} + u_{ij\bullet}\overline{\theta}^{j} = du_{i} - u_{j}\omega_{i}^{j},$$

$$u_{i\bullet j}\theta^{j} + u_{i\bullet j\bullet}\overline{\theta}^{j} = du_{i\bullet} - u_{i\bullet}\overline{\omega}_{i}^{j}.$$

Since $du = u_i \theta^i + u_i \tilde{\theta}^i$, the structural equation (1) gives

$$0 = du_{i} \wedge \theta^{i} - u_{i}\omega_{j}^{i} \wedge \theta^{j} + u_{i}\Theta^{i} + du_{i^{\bullet}} \wedge \overline{\theta}^{i} - u_{i^{\bullet}}\overline{\omega}_{j}^{i} \wedge \overline{\theta}^{j} + u_{i^{\bullet}}\overline{\Theta}^{i}$$

$$= (du_{i} - u_{j}\omega_{i}^{j}) \wedge \theta^{i} + u_{i}\Theta^{i} + (du_{i^{\bullet}} - u_{j^{\bullet}}\overline{\omega}_{i}^{j}) \wedge \overline{\theta}^{i} + u_{i^{\bullet}}\overline{\Theta}^{i}$$

$$= (u_{ij}\theta^{j} + u_{ij^{\bullet}}\overline{\theta}^{j}) \wedge \theta^{i} + u_{i}\Theta^{i} + (u_{i^{\bullet}}\theta^{j} + u_{i^{\bullet}}\theta^{j}) \wedge \overline{\theta}^{i} + u_{i^{\bullet}}\overline{\Theta}^{i}.$$

Comparing bidegrees we obtain

$$u_{ii*}\bar{\theta}^{j} \wedge \theta^{i} + u_{i*i}\theta^{j} \wedge \bar{\theta}^{i} = 0,$$

so

$$u_{ij^*}=u_{j^*i}.$$

Therefore the Laplacian of u is

(6)
$$\Delta u = g^{AB} u_{AB} = 2g^{ij^*} u_{ij^*} = 2u_{ii^*}.$$

Since $\partial u = (du)_{1,0} = u_i \theta^i$, and

$$\bar{\partial} \partial u = (d(u_i \theta^i))_{1,1} = u_{ii} \bar{\theta}^j \wedge \theta^i,$$

the Laplacian may be computed from the components of the complex hessian of u,

(7)
$$\partial \bar{\partial} u = -\bar{\partial} \partial u = u_{ii} \theta^i \wedge \bar{\theta}^j.$$

Let N be another almost hermitian manifold of the same dimension 2n, and let $f: M \to N$ be a C^{∞} mapping. We fix a local unitary frame field on N, and denote by $\theta' = (\theta'^{\alpha})$, $\Theta' = (\Theta'^{\alpha})$, $\omega' = (\omega'^{\alpha}_{\beta})$ and $\Omega' = (\Omega'^{\alpha}_{\beta})$ the pullbacks by f^* of the forms corresponding to θ , Θ , ω and Ω on M. Let $\{s_{\alpha}\}$ be the induced unitary frame field in the induced bundle $f^{-1}T^{1,0}(N)$. Then f is almost complex if and only if its differential maps tangent vectors of bidegree (1,0) to tangent vector of the same bidegree. It is therefore given by

$$f_{\star} = f_i^{\alpha} s_{\alpha} \otimes \theta^i.$$

Denoting by ∇' the covariant differential operator on $f^{-1}T^{1,0}(N)$ -valued forms induced by the canonical connections in M and N, we have

$$\nabla' f_{*} = s_{\alpha} \otimes \left(df_{i}^{\alpha} + f_{i}^{\beta} \omega_{\beta}'^{\alpha} - f_{j}^{\alpha} \omega_{i}^{j} \right) \otimes \theta^{i}$$
$$= s_{\alpha} \otimes \left(f_{ii}^{\alpha} \theta^{j} + f_{ii}^{\alpha} \bar{\theta}^{j} \right) \otimes \theta^{i} \quad (\text{say}).$$

Taking the exterior derivative of $\theta'^{\alpha} = f_i^{\alpha} \theta^i$ and using (1), we obtain

$$-\omega_{\beta}^{\prime\alpha} \wedge \theta^{\prime\beta} + \Theta^{\prime\alpha} = df_{i}^{\alpha} \wedge \theta^{i} + f_{i}^{\alpha} (-\omega_{i}^{i} \wedge \theta^{j} + \Theta^{i}),$$

that is

$$\left(df_i^\alpha + f_i^\beta \omega_\beta'^\alpha - f_j^\alpha \omega_i^j\right) \wedge \theta^i + f_i^\alpha \Theta^i - \Theta'^\alpha = 0$$

from which

$$\left(f_{ij}^{\alpha}\theta^{j}+f_{ij^{*}}^{\alpha}\bar{\theta}^{j}\right)\wedge\theta^{i}+f_{i}^{\alpha}\Theta^{i}-\Theta^{\prime\alpha}=0.$$

Comparing bidegrees we see that

$$f_{ij^*}^{\alpha}\bar{\theta}^j\wedge\theta^i=0,$$

from which

$$f_{ij^*}^{\alpha} = 0.$$

Put $D = \det(f_i^{\alpha})$, and $u = |D|^2 = D\overline{D}$. The latter is the ratio of the volume elements, f^*V_N/V_M . Let D_{α}^i denote the cofactor of f_i^{α} in D. Then

(9)
$$dD = D_{\alpha}^{i} df_{i}^{\alpha} = D_{\alpha}^{i} \left(f_{ij}^{\alpha} \theta^{j} + f_{j}^{\alpha} \omega_{i}^{j} - f_{i}^{\beta} \omega_{\beta}^{\prime \alpha} \right)$$
$$= D_{\alpha}^{i} f_{ij}^{\alpha} \theta^{j} + D(\omega_{i}^{i} - \omega_{\alpha}^{\prime \alpha})$$
$$= D_{i} \theta^{j} + D(\omega_{i}^{i} - \omega_{\alpha}^{\prime \alpha}) \quad (\text{say}).$$

Since ω_i^i and $\omega_{\alpha}^{\prime \alpha}$ are pure imaginary,

$$du = \overline{D}D_i\theta^j + D\overline{D}_i\overline{\theta}^j, \quad \partial u = \overline{D}D_i\theta^j.$$

Taking the exterior derivative of (9) and using the second structural equation (2) we obtain

$$0 = d(D_{j}\theta^{j}) + dD \wedge (\omega_{i}^{i} - \omega_{\alpha}^{\prime\alpha}) + Dd(\omega_{i}^{i} - \omega_{\alpha}^{\prime\alpha})$$
$$= d(D_{i}\theta^{j}) + D_{i}\theta^{j} \wedge (\omega_{i}^{i} - \omega_{\alpha}^{\prime\alpha}) + D(\Omega_{i}^{i} - \Omega_{\alpha}^{\prime\alpha}),$$

so that

$$0 = \overline{D}d(D_{j}\theta^{j}) + D_{j}\theta^{j} \wedge (\overline{D_{i}}\overline{\theta}^{i} - d\overline{D}) + u(\Omega_{i}^{i} - \Omega_{\alpha}^{\prime\alpha})$$

= $d(\overline{D}D_{i}\theta^{j}) + D_{i}\theta^{j} \wedge \overline{D_{i}}\overline{\theta}^{i} + u(\Omega_{i}^{i} - \Omega_{\alpha}^{\prime\alpha}).$

Hence

$$d(\partial u) = D_i \overline{D}_j \overline{\theta}^j \wedge \theta^i - u(\Omega_i^i - \Omega_\alpha^{\prime \alpha}).$$

Comparing bidegrees yields

$$\bar{\partial} \partial u = D_i \bar{D}_i \bar{\theta}^j \wedge \theta^i - u(\Omega_i^i - \Omega_{\alpha}^{\prime \alpha})_{i,j}$$

But $(\Omega_j^i)_{1,1} = R_{jkl^*}^i \theta^k \wedge \bar{\theta}^l$, where the functions R_{BCD}^A are the components of the curvature tensor. Hence

$$(\Omega_i^i)_{1,1} = R_{ikl^{\bullet}}^i \theta^k \wedge \bar{\theta}^l = R_{kl^{\bullet}} \theta^k \wedge \bar{\theta}^l,$$

where $R_{kl^*}X^k\overline{X}^l/g_{kl^*}X^k\overline{X}^l$ is the *Ricci curvature* in the direction of the tangent vector X. Using (7) we have

$$u_{ij^{\bullet}}\bar{\theta}^{j}\wedge\theta^{i}=D_{i}\bar{D}_{j}\bar{\theta}^{j}\wedge\theta^{i}+u(R_{ij^{\bullet}}\bar{\theta}^{j}\wedge\theta^{i}-f_{i}^{\alpha}\bar{f}_{j}^{\beta}R_{\alpha\beta^{\bullet}}^{\prime}\bar{\theta}^{j}\wedge\theta^{i}),$$

from which it follows that

$$u_{ii^{\bullet}} = D_i \overline{D}_i + u (R_{ii^{\bullet}} - f_i^{\alpha} \overline{f}_i^{\beta} R_{\alpha\beta^{\bullet}}).$$

Thus

$$\Delta u = 2D_i \overline{D}_i + u(R - 2f_i \overline{f}_i^{\beta} R'_{\alpha\beta^{\bullet}}),$$

where $R = 2R_{ii}$ is the scalar curvature of M, and

(10)
$$\Delta \log u = R - 2f_i^{\alpha} \bar{f}_i^{\beta} R_{\alpha\beta^*}'$$

for u > 0, that is, at those points where f is locally one-to-one. In the hermitian case, this formula was obtained by Chern [2].

If the Ricci curvature of N is not greater than -S/2n, S > 0, then

$$2f_i^{\alpha}\bar{f}_i^{\beta}R'_{\alpha\beta^{\bullet}} \leqslant -\frac{S}{n}f_i^{\alpha}\bar{f}_i^{\alpha} \leqslant -Su^{1/n},$$

so that

(11)
$$\Delta \log u \geqslant R + Su^{1/n}.$$

4. Conformal changes of the hermitian metric. Let M be a 2n-dimensional almost hermitian manifold with hermitian metric g. Then $\tilde{g} = e^{2\sigma}g$ is also an hermitian metric on M for any smooth real-valued function σ on M. Let $\{\theta^i\}$ be a (local) unitary coframe on (M, g). Then $\{\tilde{\theta}^i\}$, $\tilde{\theta}^i = e^{\sigma}\theta^i$, is a unitary coframe on (M, \tilde{g}) . Denote by $\tilde{\theta}$, $\tilde{\omega}$, $\tilde{\Theta}$ and $\tilde{\Omega}$ the analogues for (M, \tilde{g}) of the forms θ , ω , Θ and Ω , respectively, on (M, g) defined in §2. Then

(12)
$$\tilde{\theta} = e^{\sigma}\theta.$$

Hence, from (1),

$$\begin{split} \tilde{\Theta} &= d\tilde{\theta} + \tilde{\omega} \wedge \tilde{\theta} \\ &= e^{\sigma} d\sigma \wedge \theta + e^{\sigma} (\Theta - \omega \wedge \theta) + e^{\sigma} \tilde{\omega} \wedge \theta \\ &= e^{\sigma} [\Theta + (\tilde{\omega} - \omega) \wedge \theta + d\sigma \wedge \theta]. \end{split}$$

Put
$$\tilde{\omega}_{j}^{i} - \omega_{j}^{i} = a_{jk}^{i} \theta^{k} - \bar{a}_{ik}^{j} \bar{\theta}^{k}$$
 and $d\sigma = \sigma_{k} \theta^{k} + \bar{\sigma}_{k} \bar{\theta}^{k}$. Then
$$e^{-\sigma} \tilde{\Theta}^{i} = \Theta^{i} + \left(a_{ik}^{i} \theta^{k} - \bar{a}_{ik}^{j} \bar{\theta}^{k}\right) \wedge \theta^{j} + \left(\sigma_{k} \theta^{k} + \bar{\sigma}_{k} \bar{\theta}^{k}\right) \wedge \theta^{i}.$$

Comparing bidegrees we see that

$$\bar{a}_{ik}^{j}\bar{\theta}^{k}\wedge\theta^{j}-\bar{\sigma}_{k}\bar{\theta}^{k}\wedge\theta^{i}=0,$$

from which it follows that

$$a_{ik}^j = \delta_i^j \sigma_k$$
.

Therefore

$$\tilde{\omega}^i_j = \omega^i_j + \delta^i_j \sigma_k \theta^k - \delta^i_j \overline{\sigma}_k \overline{\theta}^k, e^{-\sigma} \widetilde{\Theta}^i = \Theta^i + 2\sigma_k \theta^k \wedge \theta^i.$$

Setting $d^c \sigma = i(\bar{\partial} \sigma - \partial \sigma) = i(\bar{\sigma}_k \bar{\theta}^k - \sigma_k \theta^k)$ we may write the last two formulas as

(13)
$$\tilde{\omega} = \omega + i d^c \sigma I,$$

(14)
$$e^{-\sigma}\tilde{\Theta} = \Theta + 2\partial\sigma \wedge \theta,$$

where I is the identity matrix.

For the curvature forms, from (2) we have

(15)
$$\tilde{\Omega} = d\tilde{\omega} + \tilde{\omega} \wedge \tilde{\omega} = d\omega + idd^c\sigma I + \omega \wedge \omega = \Omega + idd^c\sigma I.$$

Comparing bidegrees yields

(16)
$$\tilde{\Omega}_{1,1} = \Omega_{1,1} - 2\partial\bar{\partial}\sigma I,$$

or, in terms of components,

$$e^{2\sigma}\tilde{R}^{i}_{jkl^{\bullet}} = R^{i}_{jkl^{\bullet}} - 2\delta^{i}_{j}\sigma_{kl^{\bullet}},$$

where $\partial \bar{\partial} \sigma = \sigma_{kl^*} \theta^k \wedge \bar{\theta}^l$. Thus, for the Ricci tensors,

$$e^{2\sigma}\tilde{R}_{kl^*} = R_{kl^*} - 2n\sigma_{kl^*},$$

and, for the scalar curvatures,

(17)
$$e^{2\sigma}\tilde{R} = R - 2n\Delta\sigma.$$

(The last formula is simpler than its Riemannian analogue.)

5. The volume-decreasing theorem. Let M be a complete simply connected n-dimensional Kaehler manifold of nonpositive sectional curvature. We exhaust M by a sequence of relatively compact open submanifolds $M_{\rho} = \{ p \in M | \tau(p) < \rho \}$, where $\tau(p)$ is the Riemannian distance of p from a fixed point in M, that is, $M = \bigcup_{\rho < \infty} M_{\rho}$. Endow M_{ρ} with a metric \tilde{g} conformally related to g, namely,

$$\tilde{g} = e^{2v_{\rho}}g$$
, where $v_{\rho} = \log \frac{\rho^2}{\rho^2 - \tau^2}$.

By (17), the scalar curvature \tilde{R} of (M_{ρ}, \tilde{g}) is given by

$$\tilde{R} = e^{-2v_{\rho}}(R - 2n\Delta v_{\rho})$$

$$=\left(\frac{\rho^2-\tau^2}{\rho^2}\right)^2R-\frac{4n}{\rho^4}\left[\rho^2+\tau^2+(\rho^2-\tau^2)\tau\Delta\tau\right],$$

where we have used the identity

$$\Delta v_{\rho} = \frac{dv_{\rho}}{d\tau} \Delta \tau + \frac{d^2 v_{\rho}}{d\tau^2}.$$

Suppose now the scalar curvature of M satisfies $R \ge -S$, where S is a positive constant. Since M has nonpositive sectional curvature, its Ricci curvature is also bounded below by -S. (Note that by Proposition 4, the canonical connection is the Riemannian connection.) Let $S = (2n - 1)\kappa^2$. Then (cf. [7])

$$0 < \tau \Delta \tau \le (2n-1)\kappa \tau \coth \kappa \tau < (2n-1)\kappa \rho \coth \kappa \rho$$
.

Hence

$$\tilde{R} = \left(\frac{\rho^2 - \tau^2}{\rho^2}\right) R - \varepsilon_{\rho},$$

where ε_{ρ} is a real-valued function on M_{ρ} satisfying

$$0 < \varepsilon_{\rho} \leq \frac{4n}{\rho^4} \left[2\rho^2 + (2n - 1)\kappa \rho^3 \coth \kappa \rho \right] = 0 \left(\frac{1}{\rho} \right)$$

as $\rho \to \infty$. Therefore, for every $\varepsilon > 0$, we have

(18)
$$\tilde{R} \ge -S - \varepsilon$$

on M_{ρ} for sufficiently large ρ .

Let f be as in Theorem 1, and let \tilde{f} : $M_{\rho} \to N$ be its restriction to M_{ρ} . Consider the ratio of volume elements

$$\tilde{u} = \tilde{f}^* V_N / V_{M_\rho} = e^{-2m_\rho} u = \left(\frac{\rho^2 - \tau^2}{\rho^2}\right)^{2n} u.$$

Since the function \tilde{u} is nonnegative and continuous on the closure of M_{ρ} , and zero on its boundary, it attains its maximum on M_{ρ} . If the Ricci curvature of N is not greater than -S/2n, then, by (11) and (18),

$$\tilde{\Delta} \log \tilde{u} \geqslant \tilde{R} + S\tilde{u}^{1/n} \geqslant S(\tilde{u}^{1/n} - 1) - \varepsilon.$$

At the maximum point x of \tilde{u} , $\tilde{\Delta} \log \tilde{u} \leq 0$, unless \tilde{u} is totally degenerate. Hence $\tilde{u}(x) \leq (1 + \varepsilon/S)^n$. Since this inequality obviously holds at all points p of M_o ,

$$u(p) = \left(\frac{\rho^2}{\rho^2 - \tau^2}\right)^{2n} \tilde{u}(p) \leqslant \left(\frac{\rho^2}{\rho^2 - \tau^2}\right)^{2n} \left(1 + \frac{\varepsilon}{S}\right)^n.$$

Finally, letting $\rho \to \infty$, and $\varepsilon \to 0$, we conclude that $u \le 1$ thereby completing the proof of Theorem 1.

Corollary 1. Let M be the open unit ball in \mathbb{C}^m with the Poincaré-Bergman metric, and let N be an almost hermitian manifold of the same dimension. If the Ricci curvature of N is not greater than -2(m+1), then every almost complex mapping $f: M \to N$ is volume-decreasing.

Corollary 2. Let M be a symmetric bounded domain with the Bergman metric, and let N be an almost hermitian manifold of the same dimension. If the Ricci curvature of N is not greater than -1, then every almost complex mapping $f: M \to N$ is volume-decreasing.

In both corollaries, M is an Einstein-Kaehler manifold with Ricci tensor -2(m+1)g and -g respectively.

6. Mappings of bounded dilatation. Let M and N be C^{∞} Riemannian manifolds of dimensions m and n respectively, and let g and g^* denote their respective Riemannian metrics. Let $f: M \to N$ be a C^{∞} mapping, and denote by $\lambda_1(p) \ge \lambda_2(p) \ge \cdots \ge \lambda_m(p) \ge 0$ the eigenvalues of $f_*f_*: T_pM \to T_pM$, where f_* denotes the transpose of the mapping f_* . If there is a positive number K such that for every $p \in M$, $\lambda_2(p) \le \lambda_1(p) \le K^2\lambda_2(p)$, then f is said to be of bounded dilatation of order K. This notion is more general and natural than that of a K-quasiconformal mapping.

The norm ||A|| of a linear mapping: $A: V \to W$ of Euclidean vector spaces is defined by $||A||^2 = \text{trace } {}^t AA$. If $r \leq \min(m, n)$, A may be extended to the linear mapping $\bigwedge A: \bigwedge V \to \bigwedge W$ given by $\bigwedge A(v_1 \wedge \cdots \wedge v_r) = Av_1 \wedge \cdots \wedge Av_r$, where the $v_i \in V$. Then

(19)
$$\| \bigwedge' f_* \|^2 = \sum_{1 \leq i_1 < \cdots < i_r \leq m} \lambda_{i_1} \cdots \lambda_{i_r};$$

see [4]. Observe that $\| \bigwedge f_* \|$ bounds the ratio of r-dimensional volume elements. In particular, for any $X \in T_p M$,

$$(f^*g^*)(X,X) = g^*(f_*X,f_*X) = g(f_*f_*X,X)$$
$$= \sum_{i=1}^m \lambda_i(\omega_i(X))^2 \le \lambda_1 g(X,X) \le ||f_*||^2 g(X,X),$$

where $\{\omega_i\}$, $i=1,\ldots,m$, is the basis of covectors dual to an orthonormal basis of eigenvectors of tf_*f_* . Thus $f^*(ds_N^2) \leq ||f_*||^2 ds_M^2$, where ds_M and ds_N are the distance elements defined by g and g^* , respectively.

Let $k = \min(m, n)$. Then rank $f_* \le k$. Hence, by (19),

(20)
$$\left\{\| \bigwedge^q f_*\|^2 / {k \choose q} \right\}^{1/q} \ge \left\{\| \bigwedge^r f_*\|^2 / {k \choose r} \right\}^{1/r}, 1 \le q \le r \le k,$$

since $\| \bigwedge^q f_{\star} \|^2$ is the qth elementary symmetric function of $\lambda_1, \ldots, \lambda_k$.

When f is of bounded dilatation of order K, there is an inequality in the opposite direction, namely,

$$||f_*||^2 \le kK || \bigwedge {}^2f_*||.$$

To see this, assume $f_* \neq 0$. Then

$$\frac{\|f_*\|^2}{\|\bigwedge^2 f_*\|} = \frac{\sum \lambda_i}{\left(\sum_{i < i} \lambda_i \lambda_i\right)^{1/2}} \leqslant \frac{k\lambda_1}{\left(\lambda_1 \lambda_2\right)^{1/2}} = k\left(\frac{\lambda_1}{\lambda_2}\right)^{1/2} \leqslant kK.$$

Conversely, (21) implies that f is of bounded dilatation of some order. For,

$$\frac{\|f_*\|^2}{\| \wedge^2 f_*\|} = \frac{\sum \lambda_i}{\left(\sum_{i < j} \lambda_i \lambda_j\right)^{1/2}} \ge \frac{\lambda_1}{\left[\binom{k}{2} \lambda_1 \lambda_2\right]^{1/2}} = \left[\frac{\lambda_1}{\lambda_2} / \binom{k}{2}\right]^{1/2},$$

from which we have

$$\left(\frac{\lambda_1}{\lambda_2}\right)^{1/2} \leqslant \left(\frac{k}{2}\right)^{1/2} \frac{\left\|f_{\star}\right\|^2}{\left\|\bigwedge^2 f_{\star}\right\|} \leqslant k \left(\frac{k}{2}\right)^{1/2} K.$$

When M and N are almost hermitian manifolds, and $f: M \to N$ is an almost complex mapping, f_*f_* commutes with the almost complex structure J of M. This implies that if X is an eigenvector of f_*f_* , then so is JX. Since X and JX are linearly independent, the eigenvectors of f_*f_* have multiplicity 2 at least, so, in particular, $\lambda_1(p) = \lambda_2(p)$ for all $p \in M$. An important consequence of this is given by

Proposition 5. An almost complex mapping of almost hermitian manifolds is of bounded dilatation of order 1.

The following statement is an extension of the well-known fact that a holomorphic mapping of Kaehler manifolds is harmonic in terms of the corresponding Kaehler metrics.

Proposition 6 (Lichnerowicz [8]). An almost complex mapping $f: M \to N$, where M is an almost semi-Kaehler manifold and N is quasi-Kaehlerian, is a harmonic mapping.

Combining the last two propositions it is seen that an almost complex mapping $f: M \to N$, where M and N are almost semi-Kaehlerian and quasi-Kaehlerian, respectively, is harmonic and of bounded dilatation. It therefore belongs to the class recently investigated by one of the authors [4].

7. A distance-decreasing theorem. In what follows, the almost complex structures of M and N will be ignored. In fact, M and N will be C^{∞} Riemannian manifolds of dimensions m and n respectively. Proceeding locally, orthonormal moving frames $\{\theta^i\}$ in M and $\{\theta^{*\alpha}\}$ in N are chosen. Let $f: M \to N$ be harmonic. Then the components of f_* with respect to the above frames are given by

$$f^*\theta^{*\alpha}=f_i^\alpha\theta^i.$$

Assume M is complete and simply connected (otherwise, pass to its simply connected covering), and has nonpositive sectional curvature. As in §5, we exhaust M by means of the submanifolds M_p with the identical conformally related metrics.

Let \tilde{f} be the restriction of f to (M_{ρ}, \tilde{g}) . Then it is shown in [3] that $\|\tilde{f}_*\|^2 = e^{-2v_{\rho}}\|f_*\|^2$ has a maximum on M_{ρ} . Furthermore, if the Ricci curvature of M is bounded below by a negative constant -A, then there exists a sequence of positive constants $\varepsilon(\rho)$, which goes to 0 as $\rho \to \infty$, such that

$$(22) -R'_{\alpha\beta\gamma\delta}\tilde{f}_{i}^{\alpha}\tilde{f}_{j}^{\beta}\tilde{f}_{i}^{\gamma}\tilde{f}_{i}^{\delta} \leqslant \{A+\epsilon(\rho)\}\|\tilde{f}_{*}\|^{2}$$

at the maximum point x of $\|\tilde{f}_*\|^2$, where $\tilde{f}_i^{\alpha} = e^{-v_i}f_i^{\alpha}$, and the $R'_{\alpha\beta\gamma\delta}$ are the pullbacks by f^* of the components of the curvature tensor of N. On the other hand, if the sectional curvatures of N are bounded above by a negative constant -B,

$$(23) -R'_{\alpha\beta\gamma\delta}\tilde{f}_{i}^{\alpha}\tilde{f}_{j}^{\beta}\tilde{f}_{i}^{\gamma}\tilde{f}_{i}^{\delta} \leqslant -2B\|\bigwedge^{2}\tilde{f}_{*}\|^{2}.$$

Combining (22) and (23) we get, at x,

$$(24) 2B \| \wedge^2 \tilde{f}_* \| \leq \{A + \varepsilon(\rho)\} \|\tilde{f}_*\|^2.$$

If f is of bounded dilatation of order K, then from (21) and (24)

$$2B\|\tilde{f}_{\star}\|^{4} \leq \left\{A + \epsilon(\rho)\right\}k^{2}K^{2}\|\tilde{f}_{\star}\|^{2}$$

at x. Hence

$$\|\tilde{f}_*\|^2 \leq \frac{1}{2}k^2K^2\{A + \varepsilon(\rho)\}/B$$

everywhere in M_{ρ} . Since this inequality holds for every ρ and $\|\tilde{f}_*\| \to \|f_*\|$ as $\rho \to \infty$

$$||f_{\star}||^2 \leq \frac{1}{2}Ak^2K^2/B.$$

Applying the inequality (20), this implies the following distortion theorem for intermediate volume elements, which is a considerable improvement of Theorem 5.1 in [4].

Proposition 7. Let M be an m-dimensional complete Riemannian manifold with nonpositive sectional curvature and with Ricci curvature bounded below by a negative constant -A, and let N be an n-dimensional Riemannian manifold with sectional curvature bounded above by a negative constant -B. If $f: M \to N$ is a harmonic mapping of bounded dilatation of order K, then

$$\| \bigwedge f_* \|^{2/r} \leq \frac{k}{2} \binom{k}{r}^{1/r} \frac{A}{B} K^2$$

for any $r, 1 \le r \le k = \min(m, n)$.

Corollary. Under the conditions of Proposition 7, (i) f is distance-decreasing if $2B \ge k^2 A K^2$, and (ii) f is volume-decreasing if m = n and $2B \ge mAK^2$.

Propositions 5 and 6 yield the following

Proposition 8. Let M be a 2m-dimensional complete almost semi-Kaehler

manifold with nonpositive sectional curvature and with Ricci curvature bounded below by a negative constant -A. Let N be a 2n-dimensional quasi-Kaehler manifold whose sectional curvatures are bounded above by a negative constant -B. If $f: M \to N$ is an almost complex mapping, then

$$\| \bigwedge f_*\|^{2/r} \leq \frac{k}{2} \binom{k}{r}^{1/r} \frac{A}{B}$$

for any $r, 1 \le r \le k = \min(2m, 2n)$.

Theorem 2 is now a consequence of Proposition 8.

The corollary to Theorem 2 is obtained from the following formula:

$$K(X, Y)||X \wedge Y||^2 + K(X, JY)||X \wedge JY||^2 + K(JX, Y)||JX \wedge Y||^2 + K(JX, JY)||JX \wedge JY||^2 \le 2H(X, Y)||X||^2||Y||^2,$$

valid for almost Kaehler manifolds (see [6, formula 4.5]) where K(X, Y) and H(X, Y) are the sectional curvature and the holomorphic bisectional curvature, respectively, determined by the tangent vectors X and Y. From this formula, it is seen that (23) also holds under the assumption that the holomorphic bisectional curvatures of N are bounded above by a negative constant -2B.

By taking $M = \mathbb{C}^m$ with the standard flat metric Proposition 8 yields the following generalization of Liouville's theorem as well as Picard's first theorem.

Proposition 9. Let N be a quasi-Kaehler manifold with negative sectional curvature bounded away from zero. If $f: \mathbb{C}^m \to N$ is an almost complex mapping, then it is a constant mapping.

We take this opportunity to correct an error in [4], from which §§6 and 7 of this paper originated. The inequality in Lemma 2.2 should be replaced by formula (21) above. (In the hypotheses preceding Lemma 2.1 the expression l_s should be replaced by l_{s-1} .) As a consequence, the factor K^4 in Theorems 4.1, 5.1 and 5.4, as well as in Corollaries 4.2, 4.3 and 5.1 can be replaced by K^2 . This correction actually improves these results. Moreover, since for m = n = 2, the notion of a mapping of bounded dilatation of order K is identical with that of a K-quasiconformal mapping, the factor K^4 appearing in Theorem 1 of [3] may be replaced by K^2 , thereby improving that statement when M and N are surfaces.

Bibliography

- [I] S. S. Chern, Characteristic classes of Hermitian manifolds, Ann. of Math. 47 (1946) 85-121.
- [2] _____, On holomorphic mappings of hermitian manifolds of the same dimension, Proc. Sympos. Pure Math. Amer. Math. Soc. Vol. II, 1968, 157-170.

- [3] S. I. Goldberg, Mappings of nonpositively curved manifolds, Nagoya Math. J. 61 (1976) 73-84.
- [4] S. I. Goldberg, T. Ishihara & N. C. Petridis, Mappings of bounded dilatation of Riemannian manifolds, J. Differential Geometry, 10 (1975) 619-630.
- [5] A. Gray, Some examples of almost Hermitian manifolds, Illinois J. Math. 10 (1966) 353-366.
- [6] _____, Curvature identities for Hermitian and almost Hermitian manifolds, Tôhoku Math. J. 28 (1976) 601-612.
- [7] Z. Har'El, Harmonic mappings of negatively curved manifolds, Canadian J. Math. 30 (1978) 631-637.
- [8] A. Lichnerowicz, Applications harmoniques et variétés kählériennes, Symposia Math., Bologna, Vol. 3, 1970, 341-402.
- [9] J. A. Schouten & K. Yano, On an intrinsic connection in an X_{2n} with an almost Hermitian structure, Nederl. Akad. Wetensch. Proc. Ser. A, 58 (1955) 1-9.

University of Illinois, Urbana
Israel Institute of Technology, Haifa
University of Illinois, Urbana